Exercise 2

Find the derivative of the function

$$
F(x)=\frac{x^{4}-5 x^{3}+\sqrt{x}}{x^{2}}
$$

in two ways: by using the Quotient Rule and by simplifying first. Show that your answers are equivalent. Which method do you prefer?

Solution

Use the quotient rule to differentiate $F(x)$.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{\left[\frac{d}{d x}\left(x^{4}-5 x^{3}+\sqrt{x}\right)\right]\left(x^{2}\right)-\left[\frac{d}{d x}\left(x^{2}\right)\right]\left(x^{4}-5 x^{3}+\sqrt{x}\right)}{\left(x^{2}\right)^{2}} \\
& =\frac{\left(4 x^{3}-15 x^{2}+\frac{1}{2} x^{-1 / 2}\right)\left(x^{2}\right)-(2 x)\left(x^{4}-5 x^{3}+\sqrt{x}\right)}{x^{4}} \\
& =\frac{\left(4 x^{5}-15 x^{4}+\frac{1}{2} x^{3 / 2}\right)-\left(2 x^{5}-10 x^{4}+2 x^{3 / 2}\right)}{x^{4}} \\
& =\frac{2 x^{5}-5 x^{4}-\frac{3}{2} x^{3 / 2}}{x^{4}} \\
& =2 x-5-\frac{3}{2} x^{-5 / 2}
\end{aligned}
$$

Expand the function first

$$
F(x)=x^{2}-5 x+x^{-3 / 2}
$$

and then differentiate it.

$$
\begin{aligned}
F^{\prime}(x) & =\frac{d}{d x}\left(x^{2}-5 x+x^{-3 / 2}\right) \\
& =2 x-5-\frac{3}{2} x^{-5 / 2}
\end{aligned}
$$

Both approaches give the same answer, but the second one is less work.

